
cuTensor-HT: High Performance Third-order Hierarchical Tucker Tensor
Decomposition on GPUs

Hao Huang1 , Tao Zhang1,3,∗ , Xiao-Yang Liu2

1School of Computer Engineering and Science, Shanghai University, Shanghai, China
2Department of Electrical Engineering, Columbia University, USA

3Shanghai Institute for Advanced Communication and Data Science, Shanghai, China
baxlumen@shu.edu.cn, taozhang@shu.edu.cn, xl2427@columbia.edu

Abstract

Extracting effective information from large-scale
multi-dimensional data has become a hot issue, where
the hierarchical Tucker (HT) tensor decomposition is a
widely used tool. However, the HT tensor decomposition
is a computationally intensive task since the time com-
plexity increases rapidly with the dimension and size of
the tensor. In this paper, we implement the HT decompo-
sition on the GPU, and propose optimization strategies to
improve resource utilization, including efficient memory
access, reducing computation consumption and batched
operations. For tensors of various sizes, the optimized
GPU implementation achieves 4.67× speedups over the
unoptimized GPU baseline.

Keywords— GPU, hierarchical Tucker tensor decomposi-
tion, parallelization

1 Introduction
In many real-world applications, there are high dimen-

sional approximation problems, which are intractable when
the dimension grows beyond 10 [1]. The major reason is that
as the dimension grows, the storage space and computation
will grow exponentially. Several methods based on approxi-
mation of low rank tensors are proposed and have important
applications [2] [3] in many fields. For example, CANDE-
COMP/PARAFAC (CP) decomposition [4] is a simple low-
rank approximation method, but it lacks of flexibility in appli-
cations. Tucker decomposition [5] can overcome the problem
of insufficient flexibility by setting different ranks in different
tensor modes. But in the case of high order tensors, the size
of the core tensor generated by Tucker decomposition will
also increase exponentially with the dimension. Hierarchical
Tucker (HT) tensor decomposition [6] can perform well in the
case of large-scale tensors. It has a high degree of parallelism
[1], flexibility, and can effectively use the properties of low
rank tensors, significantly reduce the amount of storage.

However, tensor decomposition workloads are compute-
intensive and the computation grows rapidly with the size and
dimensions of tensors. GPUs have higher throughput, mem-
ory access bandwidth, and better energy efficiency than CPUs

∗Corresponding author: Tao Zhang. Tao Zhang is supported by
Science and Technology Committee of Shanghai Municipality under
grant No. 19511121002 and No. 19DZ2252600.

Figure 1: The binary tree generated by a third-order tensor.

[7], therefore they have been widely used in many computa-
tionally intensive tasks [8], [9]. Moreover, the high paral-
lelism of HT decomposition is well suited for GPUs. In this
paper, we map the algorithmic flow of the HT decomposi-
tion onto the GPU architecture. In addition, we propose opti-
mization strategies based on the GPU algorithm and achieve
significant acceleration.

The major contributions of this paper are as follows. First,
we implement the HT decomposition on GPUs. Second, we
propose optimization strategies for memory access, reducing
the amount of calculation and improving resource utilization,
thereby improving algorithm performance. Third, we con-
duct experiments to evaluate the performance of HT decom-
position algorithm on GPUs and we achieved 4.67× speedups
over the unoptimized GPU baseline.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the HT tensor decomposition algorithm. In
section 3, we present the design, implementation and opti-
mization of the HT tensor decomposition algorithm on GPUs.
The experiment settings and results are presented in Section
4. Section 5 concludes this paper.

2 Hierarchical Tucker Decomposition
The hierarchical Tucker tensor decomposition is a typical

special form of the tensor networks. The HT decomposition
is introduced in [6], we briefly summarize the key concepts.

2.1 The Principle of HT Decomposition
Generally, the HT format is stored in the form of a binary

tree T , where each branch is a hierarchical division of the
tensor mode set. For example the binary tree of a tensor X ∈
Rn1×n2×n3 is given in Fig. 1. For convenience of notation,



Algorithm 1 Hierarchical Tucker tensor decomposition

Input: Tensor X ∈ Rn1×n2×n3 , rank r1, r2, r3, r4.
1 : U1 ←(r1 leading left singular vectors) of X(1),
2 : U2 ←(r2 leading left singular vectors) of X(2),
3 : U3 ←(r3 leading left singular vectors) of X(3),
4 : U4 ← (r4 leading left singular vectors) of XT

(3),
5 : U4 ← tensorizing of U4,
6 : B2 = U4 ×1 U

T
1 ×2 U

T
2 ,

7 : B1 = X ×1 U
T
4 ×2 U

T
3 ,

Output: B1,B2,U3,U2,U1.

we assume that each element in the left child of a node in
the binary tree is smaller than any element in the right child.
There is only a single mode in all leaf nodes, and a set of
modes is included in the non-leaf nodes. By observing the
binary tree T , we can know it satisfies that:

• All nodes are non-empty subsets of the mode set.

• The set of root node is troot = {1, 2, 3}.

• The set of left and right children of each non-leaf node
are disjoint.

HT decomposition is to perform the singular value decompo-
sition (SVD) on each child node of the tree structure. Among
these nodes, each leaf node stores the left singular vectors ma-
trix. For non-leaf nodes t, it stores a tensor Bt called transfer
tensor, which satisfies:

Bt = Ut ×1 U
T
tl
×2 U

T
tr , (1)

where the Ut is the left singular vectors matrix of node t, and
Utl , Utr are left singular vectors matrices of the left and right
children of t, respectively. The ×1 and ×2 are tensor times
matrix (TTM).

2.2 Overview of HT Decomposition Algorithm
The algorithm of HT decomposition is roughly consists of

two steps. First, we perform matricization operations on the
tensor in different mode sets and use the matrix X(t) to get
the left singular vectors matrix Ut ∈ Rnt×rt in lines 1-4. In
line 5, tensorizing means it reshapes the matrix into a tensor.
Secondly, we use (1) to calculate the transfer tensor B stored
in the non-leaf node. The algorithm is described in Alg. 1
proposed by [6] and we set rt = 0.2× nt.

3 Parallel HT Decomposition on GPUs
As mentioned in [1], HT decomposition has strong paral-

lelism. By organizing data and transplanting the algorithm
to GPUs, we obtain the baseline (unoptimized) GPU imple-
mentation. To improve performance, we propose optimiza-
tion strategies for efficient memory access, reducing com-
putations and improving resource utilization. We implement
these optimizations on GPUs and obtain the optimized GPU
implementation.

Figure 2: The diagarms of three modes of data stored in CUDA.

3.1 Design and Implementation
The main calculation of HT decomposition includes two

parts. The first part is the SVD at lines 1-4 as described in
Alg. 1 and the second part is the TTM at lines 6-7. In the
process of updating the left singular vectors matrix, there is
no dependency between the data used in the step and this fea-
ture is suitable for parallel execution on many-core GPUs.

3.1.1 Data Storage
In the GPU algorithm, all matrices and tensors are stored

in memory in a column-major layout. During program exe-
cution, the data is always accessed in units of columns, which
ensures continuous memory access. In addition, we use the
official routines of NVIDIA CUDA, and the data of these rou-
tines is stored in columns-major format by default.

3.1.2 Implementation Details
The first part of the algorithm is to obtain the left singular

vectors matrix U . We use the routine gesvd(·) in the NVIDIA
cuSOLVER library for this part. This routine requires that the
number of rows in the input matrix is greater than the num-
ber of columns. However, the number of rows of the X(t) is
usually less than the number of columns. Therefore, we first
perform QR decomposition on the matrix X(t) and decom-
pose the matrix into an orthogonal matrix Q and an upper
triangular square matrix R, then use the routine gesvd(·) on
the R. After running this routine, we multiply the obtained
left singular vectors matrices and Q, and the result is the ma-
trix Ut that we need.

The second part of the algorithm is to calculate B2, B1.
This calculation process is a matrix multiplication opera-
tion. We use the matrix multiplication routine in NVIDIA
CUBLAS to update.

3.2 Optimization Strategies
As mentioned above, SVD and TTM are the two most im-

portant parts of the GPU algorithm. The essence of the TTM
calculation process is matrix multiplication, but it contains
many matricization operations, which increases unnecessary
time complexity. The performance of the baseline algorithm
is not perform well, primarily due to the low resource uti-
lization. We optimize the GPU algorithm on three aspects:
1) memory access; 2) reducing computations; 3) improving
resource utilization by batching multiple operations.



Algorithm 2 Optimized hierarchical Tucker tensor decompo-
sition on GPUs
Input: Tensor X ∈ Rn1×n2×n3 , rank r1, r2, r3, r4.

1: for i = 1 to 3 do
2: Hi = X(i)X

T
(i)

3: end for
4: for j = 1 to 3 in parallel do
5: Uj ←(rj leading eigen vectors) of Hj

6: end for
7: U4 ←(r4 leading left singular vectors) of XT

(3)

8: B2 = U4 ×1 U
T
1 ×2 U

T
2 ,

9: B1 = X ×1 U
T
4 ×2 U

T
3 ,

Output: B1,B2,U3,U2,U1.

3.2.1 Reducing Computations
In the part of performing TTM calculations at lines 6-7

in Alg. 1, we need to convert the tensor into a matrix ac-
cording to mode-1, and then convert it back to a tensor after
matrix multiplication. After that, repeat this process accord-
ing to mode-2. There are eight times matricization. Obvi-
ously, matricization increases the computational complexity
of this part. In CUDA, matrices and tensors are in column-
major, and stored in memory as a one-dimensional array. As
shown in Fig. 2, we get the matrix X(t) by different ways
of organizing numbers, so we avoid the matricization. For
a tensor X ∈ Rn1×n2×n3 , the X(1) only needs to take data
from memory according to n1 × (n2n3); transpose the front
and back parts of X(1) separately to get X(2); get X(3) by
fetching data according to n3× (n1n2) with row-major. This
process is easy to implement in the multiplication function li-
brary CUBLAS, thus avoiding the extra calculation brought
by matricization.

3.2.2 Batch Operations
In the HT decomposition algorithm, when updating the left

singular values matrix Ut stored in the leaf node, the updat-
ing steps of each node are the same. All we need is the left
singular vectors matrix. So we use the method of eigen de-
composition to solve, because it has fewer parameters and
time consumption. First we calculate the intermediate matrix
Ht with X(t) and XT

(t) to multiply, and then use the eigen
decomposition to get Ut. In this step, the data used in each
execution process is independent of each other and has no
dependencies. To improve GPUs utilization and algorithm
performance, as shown in Fig. 3, we perform eigen decom-
position parallelly through batch processing.

We need to perform eigen decomposition on each matrix
Ht, and this process is repeated three times. In the regular
routine, these decompositions are conducted one by one se-
quentially on GPUs. However, this way does not fully uti-
lize hardware threads on GPUs. Instead, we use the rou-
tine syevjBatched(·) which performs eigen decomposition us-
ing the Jacobi method for each Ht. The parallelism of Ja-
cobi method gives the GPU better performance on small and
medium size matrices. Moreover we configure the parame-
ters in this routine to improve accuracy.

The pseudo code of the optimized HT tensor decomposi-

Figure 3: Batch processing in GPUs.

tion algorithm on GPUs is described in Alg. 2. The X(t) is di-
rectly obtained according to the above optimization method.
The matrix multiplication at line 2 will reduce accuracy if
executed in parallel, and the time complexity will not be sig-
nificantly reduced. Lines 4-6 are batch eigen decomposition
and get larger rt eigenvalues. When calculating U4 at line
7, we use the routine gesvda(·), which solves the problem of
excessive matrix rows. The U4 is directly obtained from the
U4 without calculation, as shown in Fig. 2, at line 8.

3.2.3 Memory Access Optimization
In general, the Ht is stored in the global memory for the

eigen decomposition. However, compared with the shared
memory inside the streaming multiprocessor (SM) on GPUs,
the GPU global memory has higher latency and lower band-
width. In order to batch the eigen decomposition, we need to
merge the matrix Ht into a large matrix. The Ht needs to be
accessed multiple times, which causes excessive time com-
plexity. To improve performance, we use low-latency shared
memory instead of global memory to storage the Ht. We
launch 3 × n blocks at the same time and transfer the Ht

from the global memory to the shared memory. When com-
bining the matrix Ht, the algorithm accesses the shared mem-
ory 3 × n times. Compared to global memory, using shared
memory is much faster.

4 Performance Evaluation
All experiments were performed on dual Intel Xeon E5-

2640 V4 CPUs and an NVIDIA Tesla V100 GPU, respec-
tively. Each CPU has 10 cores running at 2.4GHz and sup-
ports 20 threads through hyper-threading technology. The
GPU has 32GB device memory and 5120 CUDA cores. The
CPU algorithm uses Matlab 2017b htcuker toolbox to com-
plete and the GPU algorithm run on CUDA 10.1.

We generate tensors of different sizes for evaluation. These
tensors are obtained by multiplying several matrices accord-
ing to the properties of low rank. We use running time and rel-
ative squared error as performance evaluation metrics. For the
running time, we will execute HT decomposition on CPU and
GPU separately and record the running time. The speedup is
calculated as (CPU running time) / (GPU running time). The
error is defined as:

RSE = ‖X − X̂‖F /‖X‖F ,

where X is the original tensor and X̂ is the tensor recovered
by multiplying by the factor matrix.



Figure 4: Running time and speedups of HT decomposition.

We performed performance evaluations on CPUs and the
GPU separately, and the maximum tensor size is 1000 ×
1000 × 1000, which also reached the limit of device mem-
ory. The data here is all single-precision. Three versions of
the algorithm are executed for 5 times for comparison: the
CPU algorithm, the baseline GPU algorithm, and the opti-
mized GPU algorithm.

Fig. 4 shows the running time and speedups. As the size in-
creases, the acceleration effect will get better and better. The
baseline GPU algorithm achieves an average of 6.52× and up
to 9.43× speedups versus two Xeon CPUs. In contrast, the
optimized GPU algorithm achieves an average of 39.59× and
up to 67.21× speedups versus two CPUs.

Fig. 5 shows the performance of the two platforms in terms
of error. The error of the GPU algorithm differs from the CPU
algorithm by an order of magnitude when the tensor size is
small. Then as the size increases, the accuracy of the two
differs by no more than an order of magnitude. The error of
the GPU algorithm is 3.11 × 10−4 on average However, the
error of the CPU algorithm is 3.21 × 10−4 on average and it
grows faster as the increase of the tensor size, and when the
scale is 1000× 1000× 1000, the error reaches 0.00103.

5 Conclusion
In this paper, we analyzed the principle of HT decomposi-

tion, designed GPU-based optimization strategies, and eval-
uated the performance of the GPU algorithm through experi-
ments. In addition, significant acceleration has been achieved
on the GPU platform:up to 4.67× speedups over the unop-
timized GPU algorithm. In terms of error, the average error
of the GPU algorithm is 3.11 × 10−4, while the error of the
CPU algorithm increased to 1×10−3 in the case of large-scale
tensors. Our future work will incorporate this implementation
into the cuTensor library [10].

References
[1] Grasedyck and Lars, “Hierarchical singular value de-

composition of tensors,” SIAM Journal on Matrix Anal-

Figure 5: Error of HT decomposition.

ysis & Applications, vol. 31, no. 4, pp. 2029–2054,
2009.

[2] Y. Zhang, X.-Y. Liu, B. Wu, and A. Walid, “Video syn-
thesis via transform-based tensor neural networks.,” in
ACM Multimedia, 2020.

[3] X. Han, B. Wu, Z. Shou, X.-Y. Liu, Y. Zhang, and
L. Kong, “Tensor FISTA-Net for real-time snapshot
compressive imaging.,” in AAAI, pp. 10933–10940,
2020.

[4] J. D. Carroll and J.-J. Chang, “Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition,” Psy-
chometrika, vol. 35, no. 3, pp. 283–319, 1970.

[5] L. R. Tucker, “Implications of factor analysis of three-
way matrices for measurement of change,” Problems in
Measuring Change, vol. 15, pp. 122–137, 1963.

[6] W. Hackbusch and S. Kühn, “A new scheme for the ten-
sor representation,” Journal of Fourier Analysis and Ap-
plications, vol. 15, no. 5, pp. 706–722, 2009.

[7] T. Zhang, J. Zhang, W. Shu, M.-Y. Wu, and X. Liang,
“Efficient graph computation on hybrid CPU and GPU
systems,” The Journal of Supercomputing, vol. 71,
no. 4, pp. 1563–1586, 2015.

[8] T. Zhang, X.-Y. Liu, and X. Wang, “High performance
GPU tensor completion with tubal-sampling pattern,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 7, pp. 1724–1739, 2020.

[9] T. Zhang, H. Lu, and X.-Y. Liu, “High-performance
homomorphic matrix completion on multiple GPUs,”
IEEE Access, vol. 8, pp. 25395–25406, 2020.

[10] T. Zhang, X.-Y. Liu, X. Wang, and A. Walid, “cuTensor-
tubal: Efficient primitives for tubal-rank tensor learning
operations on GPUs,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 3, pp. 595–610,
2020.


	Introduction
	Hierarchical Tucker Decomposition
	The Principle of HT Decomposition
	Overview of HT Decomposition Algorithm

	Parallel HT Decomposition on GPUs
	Design and Implementation
	Data Storage
	Implementation Details

	Optimization Strategies
	Reducing Computations
	Batch Operations
	Memory Access Optimization


	Performance Evaluation
	Conclusion

